
State Representations as Incentives for Reinforcement Learning Agents:
A Sim2Real Analysis on Robotic Grasping

Panagiotis Petropoulakis1∗, Ludwig Gräf1∗, Mohammadhossein Malmir1†, Josip Josifovski1†, and Alois Knoll1

Abstract— Choosing an appropriate representation of the
environment for the underlying decision-making process of the
reinforcement learning agent is not always straightforward. The
state representation should be inclusive enough to allow the agent
to informatively decide on its actions and disentangled enough to
simplify policy training and the corresponding sim2real transfer.
Given this outlook, this work examines the effect of various
representations in incentivizing the agent to solve a specific
robotic task: antipodal and planar object grasping. A continuum
of state representations is defined, starting from hand-crafted
numerical states to encoded image-based representations, with
decreasing levels of induced task-specific knowledge. The effects
of each representation on the ability of the agent to solve the
task in simulation and the transferability of the learned policy
to the real robot are examined and compared against a model-
based approach with complete system knowledge. The results
show that reinforcement learning agents using numerical states
can perform on par with non-learning baselines. Furthermore,
we find that agents using image-based representations from pre-
trained environment embedding vectors perform better than
end-to-end trained agents, and hypothesize that separation of
representation learning from reinforcement learning can benefit
sim2real transfer. Finally, we conclude that incentivizing the
state representation with task-specific knowledge facilitates faster
convergence for agent training and increases success rates in
sim2real robot control.2

I. INTRODUCTION

The ultimate goal of intelligent agents is to maximize their
utility by learning to command resolute actions while relying
on observations that can serve as incentives for events [1]. In
Reinforcement Learning (RL), the agent’s utility is closely
associated with its return, which is the expectation of the
cumulative sum of the rewards received at every step of the
perception-action cycle along the temporal planning horizon
[2]. To obtain the best possible return, the RL agent requires
an appropriate representation of its environment state.

If we consider state representations in RL for robot control,
the representation space is usually partitioned into two sub-
spaces: the Vision State Space where the agent receives
raw image data, and the Numerical State Space where the
agent relies on hand-crafted states (e.g., derived from the

This work has been financially supported by the A-IQ READY project,
which has received funding within the Chips Joint Undertaking (Chips JU)
- the Public-Private Partnership for research, development, and innovation
under Horizon Europe – and National Authorities under grant agreement
No. 101096658.

1 The authors are with the Department of Computer Engineering, School of
Computation, Information and Technology, Technical University of Munich,
Germany.

∗ Panagiotis Petropoulakis and Ludwig Gräf are co-first authors.
† Mohammadhossein Malmir and Josip Josifovski are co-second authors.
2Supplementary materials can be found on the project webpage:

https://github.com/PetropoulakisPanagiotis/igae

robot encoders or pre-processed raw sensor data) suitable
for the task. While the raw image data is a more general
representation, it is often not directly useful as-is, since it
contains unprocessed and dense information that could hinder
the learning process. For example, a significant performance
gap was evident in the DeepMind Control Suite [3] between
numerical and vision-based states, where the agents trained
directly on images required, on average, more than 60 million
steps to reach convergence, while harder tasks could not be
solved at the same level compared to the agents that relied
on hand-crafted numerical states.

The influence of learning pre-trained representations on the
development of decision-making agents cannot be overstated
[4]. State representations play a pivotal role in enhancing
the efficiency of RL agents throughout the policy learning
process, introducing inductive biases into the features, and
accelerating exploration [5]. It can be argued that it is through
the constraints imposed by the representations that agents
formulate their incentives to learn the assigned task. In each
task, segments of the input information that hold positive
values in helping the agent make better decisions (e.g., for
optimizing its policy) are referred to as observation incentives
or the value of information [6].

Consequently, the creation of concise representations as
observation incentives necessitates the identification and
selection of the most essential and informative elements
available from the environment. To do this, intervention
incentives are used to influence observation incentives by
changing the conditional probability distribution of the
node [1] and, hopefully, enriching the representation and
accelerating exploration [5]. Intervention incentives can be,
for example, additional objectives for the task, designing
specific neural network architectures, or adding randomization
noise to the observations.

Many works have addressed the problem of shaping an
appropriate state representation for RL agents in robotics.
However, there is rarely a comparison of how different state
representations would influence the control performance of
the agent or, even more importantly, how the representation
influences the transferability of the model to the real system
in the context of simulation-based robot learning. To provide
some insight into these questions, in this work we consider a
continuum of state representations for a robotic grasping task,
ranging from a hand-crafted numerical state to an abstract
representation that should be learned from raw image data.
An objective comparison has been made to assess which
of the approaches are more suitable based on the specific
requirements of the task, available system and environment

ar
X

iv
:2

30
9.

11
98

4v
3 

 [
cs

.R
O

] 
 8

 A
ug

 2
02

4



information, and the level of robust transferability required
for real-world applications. Our analysis shows that when
high performance and smooth sim2real transfer are necessary,
general representations that do not explicitly incentivize
the available domain knowledge are underperforming. To
address this problem, we propose the Incentivized Grasping
AutoEncoder (IGAE) architecture, an image-based approach
that introduces domain-specific knowledge and enhances the
agent’s performance while holding a general representation.

II. BACKGROUND AND RELATED WORK

When one defines the state representation for the RL agent,
this definition might be more tailored to the specific task and
reward-driven [7], or it can be reward-free and involve unsu-
pervised, self-supervised, or pre-trained models to create more
generic features. For reward-free methods, there are numerous
paradigms to extract meaningful representations. In [8], the
authors examined how Maximum Likelihood Estimation
(MLE) can approximate the dynamics of data distributions that
originate from exploratory policies, ultimately leading to the
learning of a low-dimensional feature representation. Other
approaches [9], [10] involve the utilization of adversarial
losses, where a minimax objective is formulated, after which
standard gradient-based methods are employed to optimize
the discriminators’ functions responsible for generating the
state representations.

To address the challenge of data efficiency and gener-
alization to new environments in both vision-based and
hand-crafted numerical representations, recent efforts have
introduced data augmentation techniques borrowed from the
computer vision domain [3]. The Reinforcement Learning
with Augmented Data (RAD) module [11] showed that even
basic randomization added to state representations alone
outperforms more complex methods, such as pixel SAC [12].

While randomization can improve the final performance,
in some cases it can also increase the complexity of the task
learning and hinder the optimization process. In [13], the
effects of randomization in numerical-based agents for the
sim2real transfer of a robotic reaching task were analyzed.
The results showed that randomization helps in sim2real
transfer, but inappropriate randomization ranges can prevent
the agent from finding a good policy.

Recently, several works have focused on decoupling the
perception module from the policy and reducing the compu-
tational overhead of RL agent training, intending to address
more complex tasks. Parisi et al. [14] demonstrated the
effectiveness of using general pre-trained feature embeddings
from ImageNet [15] to train a shallow Multi-Layer Perceptron
(MLP) policy. This approach successfully solved several
tasks, where an end-to-end visuo-motor policy failed. In [16],
the authors combined multi-view image observations and
visuo-motor feedback through a Grasp Q-Network. The state
representation of the RL agent involved a latent feature vector
derived from convolutional and fully connected layers. This
representation enabled a 7-DOF Baxter robot to achieve a
grasping accuracy of over 90% for specific object categories.

In contrast to the impressive results, none of the above
works have analyzed the confining effect of the learned
representations on transferring the simulation-trained policies
to real-world setups. A successful sim2real transfer partly
emerges from state representations that feature robustness to
the distributional shift raised by the domain gap. Due to their
unsupervised nature, autoencoders have emerged as a key
architecture for implementing the RL perception module for
several robotic tasks in sim2real domains.

Breyer et al. [17] presented an autoencoder-based approach
to map a masked input image of an object of interest to a low-
dimensional vector and defined an efficient and dense reward
function with a prioritized RL sampling scheme to curate
difficult cases during training. This approach achieved high
success rates in tasks involving picking and lifting objects. In
the work by Nair et al. [18], a Context-Conditional Variational
Autoencoder (CC-VAE) network was trained while taking
both an input condition, the goal image observation, and
the image of the current state observation into account. The
reward signal for the RL agent was then directly defined
within this latent space. This formulation allowed users to
specify the goal condition (image) during testing, enabling
the robotic system to push an object to the desired position.
Similarly, Zhan et al. [19] utilized learned latent vectors
extracted from an autoencoder trained in a contrastive manner.
They combined several data augmentation techniques and
demonstration paradigms and then optimized a policy in just
30 minutes to control a manipulator capable of performing
diverse tasks, e.g., pulling large objects and opening drawers.

Unlike the earlier works above, we are showing an
empirical evaluation of how various state representations
with distinct abstraction levels incentivize the agent learning
process and mainly focus on analyzing which representations
can attain higher robustness for zero-shot sim2real transfer.

III. METHODOLOGY

In this section, we start by formally defining a task suitable
for comparing different state representations. We then explain
in detail the image processing architecture for the vision-
based representations, the randomization as an intervention
incentive for sim2real transfer, and finally, the evaluation
process.

A. Task Formulation

The task is to learn a control policy for a robotic manip-
ulator to perform an antipodal grasp of an object placed at
a random position in its workspace. The manipulator has
seven Degrees of Freedom (DoF) and is controlled in the
task space. Conventionally to dynamic planar grasping, the
RL agent learns to command the actions as specified by

at = [vxt , vyt ] ∈ R2. (1)

After the agent completes each RL episode (i.e., after
passing a constant amount of N timesteps per episode),
predefined actions are applied to attempt grasping. Namely,
if there are no collisions, the following terminal actions are
manually initiated at the conclusion of the episode: 1) move



the end effector down to a predetermined height, 2) close the
gripper, and 3) move the end effector up to a predetermined
height. Therefore, successful grasping can only occur if the
end effector is in the ideal position before the start of the
terminal actions. If a collision occurs at any point, a penalty is
added once in the total return, and the episode is considered
unsuccessful. This penalty is applied only when: 1) there
is a collision of the fingers with the object, 2) there is a
collision of the robot with itself, or 3) the safety limit of the
joints is violated. For the remaining steps of the episode after
the collision, the RL agent receives zero rewards, with zero
velocities commanded to the manipulator.

More formally, the reward function that guides the agent
in learning the task is structured as

rt =

{
wx ∗∆dxt + wy ∗∆dyt , no collision
rc, collision

, (2)

where t ranging from 0 to N represents the episode timestep,
with N denoting the episode duration. ∆dxt

and ∆dyt
are

the normalized differences between the distances from the
end effector to the object in the x and y-axes at the current
timestep compared to the previous one. In particular, ∆dxt

is equivalent to
(
dxt−1

− dxt

)
. Here, dxt

is the distance of
the end effector to the object at timestep t, and dxt−1

is the
distance at t− 1, the previous timestep3.

B. Image Processing Backbone

To examine vision-based approaches and mitigate the
high training time disparities compared to the numerical
agents, while also ensuring fair comparisons across methods,
image observations are pre-processed by the same encoder,
as depicted in Figure 1. The output then represents the
input state for the RL agent. Nevertheless, to create distinct
state representations, we introduce variations in the training
objectives. This approach allows us to gain deeper insights
into how intervention incentives can transform the original
space into a more meaningful and sample-efficient space for
the policy to learn the task.

C. State Representations Continuum

Six state representation spaces are formulated in this and
the next section to train RL agents through the reward function
and compared with a non-RL baseline. The methods vary
from predefined hard-coded spaces to a more general end-to-
end paradigm, as shown in Figure 2.

Non-RL Baseline: The baseline method employed is
Ruckig, a real-time, open-source, and time-optimal trajectory
generation algorithm described in [23]. The baseline has full
knowledge of environment dynamics, and therefore, it serves
as an upper bound for the performance of the RL agents.

State RL Agent: The first learning agent and the simplest
state representation is implemented through a hard-coded

3In the analysis, we found that the best performance was achieved by
separating the errors of the two axes into distinct terms. The conventional
practice of using the negative Euclidean distance from the end effector to
the object as a reward for grasping led to significantly slower convergence
than our modification.

Fig. 1: The same backbone architecture was consistently used
in all the vision-based RL agents. This decision was made
to assess the impact of various training objectives in shaping
the original image space into meaningful representations of
the environment. The architecture itself is an adaptation of
the ResNet Autoencoder (AE) [20] with a spatial SoftMax
output layer [21], [22].

numerical approach. This particular agent, denoted as the State
RL agent, relies on the manipulator’s encoder measurements,
and its state space is defined as

st = [∆xt,∆yt, q1t , ..., q7t ] ∈ R9, (3)

where ∆xt and ∆yt are the positional errors between the
end effector and the target position of the object in x and
y-axes, and qit is the i-th joint position of the manipulator.

Vision-to-State RL Agent: The Vision-to-State (VtS)
RL agent represents the transition between numerical and
image-based representations. Rather than relying on the
manipulator’s encoders, the joint angles and the positional
errors, as described above, are predicted here from image
observations. The convolutional backbone (see section III-B)
processes RGB images and a shallow MLP consisting of
4 layers is pre-trained to predict the numerical state of the
agent. Due to the occlusion and finite training data, a perfect
numerical state is not observable from the image space and
the output of MLP contains regression error. Hence, to keep
the comparison fair, an identical state RL agent is entirely
trained over the estimated states.

Incentivized Grasping AutoEncoder RL Agent: The
next level of state representation is an autoencoder-based
latent representation derived from image observations. In
AutoEncoder RL agents, the trained latent vector is frozen
and then processed by the actor-critic networks for the
agent training phase. To achieve a balanced blend of general
representation and task-specific precision, we introduce the
Incentivized Grasping AutoEncoder (IGAE) architecture (see
Figure 3). The IGAE is a segmentation-inspired RL agent
tailored for the grasping task by introducing additional
objectives, i.e. intervention observation incentives. These
incentives are designed with the intention of isolating and
shaping specific regions of the vision space, guiding the RL
agent to learn the task in a more sample-efficient manner.

Vanilla AutoEncoder RL Agent: In this level of state
representation, we are now progressively eliminating human-
injected knowledge, and shifting to a more abstract and
generic representation. For the vanilla AE agent, we discard
the extra objectives introduced in the IGAE agent and retain
only the RGB reconstruction head to project the vision space
into a more generic latent feature representation.



Fig. 2: State Representations Continuum: A model-based baseline with full system knowledge and multiple RL approaches
having different state representation spaces with decreasing levels of system knowledge (increasing abstraction) are examined.
Models on the left have the state information explicitly available in the form of numerical values for the robot joints or the
object, whereas vision-centric techniques on the right generate implicit latent representation to guide the RL policy.

Fig. 3: The Incentivized Grasping AutoEncoder (IGAE) takes
an augmented image as input and performs reconstruction
tasks. It reconstructs first the original (denoised) RGB image,
then the gripper, and finally the object binary masks. The
total loss is a weighted contribution of each reconstruction
loss through λi terms. In our settings, λ1 is set to 1, λ2 to
10, and λ3 to 20.

End-to-End RL Agent: In the most extreme case of
defining a representation space, we grant complete freedom
to the RL policy. We couple representation learning with
the policy learning step and update the vision module’s
weights as the agent learns the grasping task. The primary
goal of the end-to-end RL agent is to learn the task relying
solely on the reward signal by removing all intervention
observation incentives introduced earlier. This increases the
number of parameters to be learned, potentially resulting
in slower training, reduced sample efficiency, and higher
complexity in the RL algorithm.

D. Domain Randomization for Sim-to-Real Transfer

Training RL agents in idealized simulation environments is
insufficient to transfer their policy into real-world systems due
to the sim2real gap [24], [25]. Simulations can not accurately
capture the expected noise of the robot’s measurements nor
the exact appearance, for instance, lighting conditions of real
robotic setups.

In the scope of our analysis, we focus on state representa-
tions that incentivize simulation-trained RL agents to solve

the task both in simulation and in the real system. We adopt
the core ideas from the RAD module [11] and Tobin et al.
[26], which demonstrated successful agent transfer via domain
randomization in both numerical and vision-based domains.

For all the image-based models, domain randomization
is applied in two distinct ways: 1) by directly adding noise
to the images generated by the simulator, and 2) by first
applying physical adaptations to the simulation environment
and then introducing additional noise through step 1.

In the first step, the following augmentations are randomly
applied: Random Cropping, Gaussian Blurring, Random
Changes in Brightness, Random Four-Point Perspective
Transform, and Random Channel-Wise Noise. Finally, for the
second step, our simulator4 offers a wide range of physical
adaptations to enhance realism and variability: Random Floor
Appearance, Random Texture, Shadow Randomization, and
Random Camera Pose Perturbations.

State Randomized RL Agent: In the case of numeric
observations, a more conservative approach is followed since
the manipulator’s encoder measurements are less noisy than
the images. This agent is similar to the State RL Agent,
with the difference that a uniform noise of 5% is applied at
every timestep t in the state of the agent during the policy
training. The magnitude of the random noise resulted from
optimization over preliminary sim2real experiments in order
to create a non-jittering motion.

IV. EXPERIMENT SETUP

A. Environment Description

For the experiments, we use the VTPRL simulation
environment introduced by [27], developed with the Unity
game engine [28] and coupled with the Dynamic Animation
and Robotics Toolkit (DART) [29] for the inverse kinematics
calculations. It has a comparable API to OpenAI Gym [30]
and allows parallel simulation of several robots to speed up
the training process. We use the KUKA LBR iiwa 14 robotic
manipulator [31] and the 2-Finger Adaptive Robotic Gripper

4The simulator used for the experiments is available at:
https://github.com/tum-i6/VTPRL



Fig. 4: Overview of the real-world setup (left). Image
observation from the Kinect V2 camera (top), and the aligned
image observation in the simulated environment (bottom).

(2F-85 model) by Robotiq [32], with a maximal opening of
85 mm. The simulated manipulator and gripper parameters
and meshes are obtained from the URDF data provided by
the ROS-Industrial [33] and Robotiq [34] packages. The
real robot is controlled with the IIWA stack [35] via Robot
Operating System (ROS) [36]. In the real setup, the image
observations are taken with the Microsoft Kinect V2 camera
sensor [37] and processed with the iai kinect2 [38] package.
The object we grasp is a foam box with dimensions of 50 x
100 x 50 mm (width x height x depth).

B. Implementation Details

AutoEncoders: The agent learning process here is divided
into three separate steps. 1) Training images and segmentation
masks are initially generated from the simulation based on
the unique color of the gripper and the target object. 2) The
autoencoders are then trained to compress augmented (noisy)
images into 128-dimensional latent vectors. This is achieved
by reconstructing the original (denoised) RGB images, guided
by an Mean Squared Error (MSE) loss objective [39]. As
a result, a simulated and a corresponding real-world image
are encoded to similar latent representations. Additionally, to
further shape the latent space, the IGAE predicts two binary
segmentation masks with Binary Cross-Entropy (BCE) loss
objectives, one for the gripper and one for the target object.
3) Once the autoencoders have been optimized, the frozen
encoders process the image observations, and the agents
learn a policy through interactions with the environment
while relying on the latent vector as a representation of the
environment states.

RL Policy: For all representation spaces we used the
model-free algorithm Proximal Policy Optimization (PPO)
[40] to train the agents. This algorithm is particularly well-
suited for continuous action spaces, and the novel proposed
clipping coefficient can effectively address the high variance
issues in the policy update step. We used the parallel PPO
implementation from StableBaselines3 [41].

Regarding the architecture of the policy network, the default
implementation for the PPO algorithm of the StableBaselines3
(2 fully connected layers of 64 units and Tanh activation
functions for each of the actor and the critic’s heads) showed
the best performance. However, in the vision-based methods,
replacing the Tanh with ReLU activation functions yielded

TABLE I: Representation-specific PPO hyperparameters.

St. St. (rnd.) & VtS AE & IGAE EtE

LR (α) 0.001 0.0005 0.0001 0.00005
Clip range (ϵ) 0.3 0.25 0.25 0.25

TABLE II: Representation-invariant PPO hyperparameters.

Entropy coefficient (c2) 0.02
Discount factor (γ) 0.96
Bias-variance trade-off (λ) 0.92
Number of steps (n steps) 512
Number of optimization epochs (n epochs) 10
Value function coefficient (c1) 0.5
Gradient Clipping (max grad norm) 0.5
Mini-batches (batch size) 32

more stable results5.
The hyperparameters for the policies and autoencoder

architectures were determined using the Optuna Search
framework [42]. The policy optimization process was carried
out on the State RL agent, and the best-found hyperparameters
were also applied to the other agents. However, the learning
rate (α) and clip range (ϵ) were optimized from the beginning
in all approaches since these parameters are highly sensitive to
the dimension of the representation, ensuring fair comparisons
across the methods. The hyperparameter settings for PPO can
be found in Tables I and II.

The agents’ actions and states are scaled to fall within
the range of [−1, 1] for stable training of the policy. The
maximum task-space velocities are also set to 0.035m/sec,
and the configured control cycle is 20Hz. For the non-
learning baseline, we intentionally remove the acceleration
and jerk constraints to ensure a fair alignment with the RL
definitions. In total, the complete 6-DoF Twist vector of the
robot end effector is controlled, and only the two planar
velocities are commanded as at by the trained agents. Hence,
to force the robotic manipulator to perform planar movements
and maintain a consistent pose across its uncontrolled DoF
(4 in total), a Proportional (P)-controller is utilized. The
gains are 0.5, and 1.5 for the positional and rotational errors,
respectively. The same P-controller is employed across all
different approaches.

The episode duration is uniform and set to 400 timesteps,
and the RL agents were trained for a total of 1.5 million
timesteps. The reward weights wx and wy are both set to a
value of 1.0 and the collision term rc to a value of −100.
The joint limits are set to −10◦ from the physical limits.
We finally trained on 16 environments in parallel, and for
evaluation, 50 random object positions were selected to assess
the 30 saved model checkpoints.

V. EXPERIMENT RESULTS

The success rate development during the training of the
RL agents, along with the non-learning baseline on the 50

5Most likely, the sparsity property contributed to the improved behavior,
given the larger input dimension compared to the State RL agent. We also
observed that other types of activation functions performed much worse, and
smaller policy networks always outperformed larger ones in our setup.



Fig. 5: The success rate development in training the proposed
agents, each utilizing distinct representation space.

evaluation object positions, is shown in Figure 5. These results
consist of an average of 5 runs with distinct initialization
seeds. The grasping task can be completely solved with a
100% success rate using the following methods: 1) Ruckig,
2) Ideal State, 3) Randomized State, and 4) IGAE RL agents.

Most approaches exhibit small standard deviations, apart
from the vanilla autoencoder and end-to-end RL agents. In
the Ideal State RL agent, after 180.000 timesteps, the standard
deviation across all five runs becomes zero. In the absence of
errors and noise, numerical RL agents can solve the task as
well as non-learning control methods that have full system
knowledge. However, introducing only 5% of uniform random
noise in the observation, i.e. the Randomized State RL agent,
results in a 2x slower convergence rate.

The task-specific IGAE RL agent is the best-performing
vision-based method, with the best-trained model showing a
100% success rate (Table III). We hypothesize that this is due
to the additional object and end-effector reconstruction heads,
which induce a rich latent feature vector that can effectively
incentivize the policy to understand the important parts of the
environment. The VtS and vanilla AE agents then follow with
success rates of 94% and 92%, respectively. However, when
the best models are evaluated in a simulation environment
with heavy random physical adaptations applied (e.g., camera
position), the performance drops to 78% for the IGAE and
70% for both VtS and vanilla AE (Table III third column).

During the sim2real transfer, we evaluate the checkpoints
for the vision-based models that perform best in randomized
simulations to gain insights into the effectiveness of the
proposed augmentations in bridging the sim2real gap.

On the real system, the Ruckig baseline along with both the
Ideal and Randomized State RL trained models, consistently
achieved successful picking of all 50 evaluation objects.
The top-performing vision-based agent on the real setup
is the IGAE RL agent, with a success rate of 84%. In
contrast, all other agents relying on image observations
experienced a significant drop in their ability to grasp
the targets. Specifically, the vanilla autoencoder achieved
a success rate of 60%, followed by the VtS with 52%. The
end-to-end paradigm exhibited the lowest success rate at 24%.

In qualitative terms, as is evident in the supplementary
video6, the Randomized State RL agent exhibited smoother
behavior compared to the Ideal State agent. It maintained

6The supplementary video can be found at: https://youtu.be/saX9zc9pbps

TABLE III: Mean success rate across the different state
representation strategies.

Average + Std.
(Idl. Sim.)

Best Model
(Idl. Sim.)

Best Model
(Rnd. Sim.)

Best Model
(Real)Strategy

Ruckig 100% 100% N/A 100%
St. 100% 100% N/A 100%
St. (rnd.) 100% 100% N/A 100%
VtS 91.6% ± 2.2 94% 70% 52%
IGAE 96.0% ± 2.8 100% 78% 84%
AE 82.4% ± 7.1 92% 70% 60%
EtE 54.8% ± 11.0 78% 44% 24%

minimal velocities when approaching the object, while the
Ideal State agent displayed a jittery movement pattern
due to operating at maximum velocity ranges, resulting in
overshooting. This highlights the importance of incorporating
observation noise during policy training for numerical agents
to ensure robust sim2real transfer.

VI. DISCUSSION

The results show a significant difference in performance
between RL agents relying on numerical vs. image-based
representations. Since solving the task requires high precision,
a representation generated from the robot’s encoders is
more suitable to learn from, compared to a more abstract
representation inferred from images. The performance of
image-based representations can be improved if we introduce
domain knowledge and provide an incentive about the
important aspects of the task, as is done with the IGAE
approach. Otherwise, a vanilla autoencoder would assign
equal importance to all pixels in the input observations. This is
a problem in the specific case, because the robot and the object
occupy a small portion of the workspace, making the latent
vectors more prone to noise. However, general representations
like the ones generated from the vanilla autoencoder become
crucial in scenarios where searching for suitable objectives
(intervention incentives) to shape the original representation
space is not straightforward. For instance, in tasks like pushing
objects in cluttered scenes or collaborative tasks, where
defining precise objectives can be challenging.

The results provide empirical evidence that decoupling
the representation learning from the policy learning leads to
better performance. In the case of end-to-end learning, both
the encoder and policy network weights are backpropagated
during the policy update steps, and the only signal to refine
the state of the agent is the reward function. In future works,
intervention incentives for control, like action primitives [43],
should be considered to reduce the optimization difficulty of
the RL policy again.

It also seems that even small errors in predicting the state
from the VtS agent could lead to detrimental results. A minor
error of 2◦ could result in an average error of 5 cm in task
space for a 1.5 m robot and lose the target. Noisy predictions
in some of the dimensions of the 128-dim latent vectors of
the autoencoders do not affect at the same level the agent
behavior. In VtS models, it would be more practical instead
to regress the pose of the end-effector, where the predictions
could be more precise. This has been ignored in our analysis



TABLE IV: Evaluation of autoencoder-based vision models
over KNN-MSE criterion.

Strategy Mean Std. Max Min
IGAE 0.0393 0.1679 1.8883 1.4122× 10−6

AE 0.0459 0.1839 1.6960 1.4122× 10−6

VtS 0.0488 0.1946 1.6857 1.8881× 10−6

due to preserving a fair comparison with the state RL agents,
which rely on the values of the robot’s joints.

It is plausible that fine-tuning the individual networks,
such as carefully designing the architectures of the neural
networks in VtS and end-to-end approaches and optimizing all
the hyperparameters of the PPO algorithm from the beginning,
could lead to higher success rates for the grasping task.
However, we focused on ensuring equal conditions as much as
possible throughout the approaches to examine the advantages
and weaknesses of each approach more objectively.

The evaluation of the representation quality of the agents
that utilize the pre-trained encoder can be done using a
Nearest-Neighbor criterion, as in [44], [45]. First, we must
acquire the nearest neighbors in the learned state space, and
then, for each neighbor, find the corresponding state of the
robot as defined in the case of the Numerical agents III-C.
KNN-MSE measures how far an observation’s value is from
its nearest neighbors in the learned data, using the ground truth
states. A small distance means the neighbor relationships in
the original data are maintained in the learned representation.

For an observation image I, KNN-MSE is defined via its
associated learned state s = ϕ(I) as

KNN-MSE(s) =
1

k

∑
s′∈KNN(s,k)

∥s̃− s̃′∥2, (4)

where KNN(s, k) returns the k nearest neighbors of s, in the
learned state space S, s̃ is the ground truth associated to s,
and s̃′ is the ground truth associated to s′.

In real experiments, we captured images during the evalu-
ation of the IGAE agent in several episodes and then used
them to evaluate this criterion across the different autoencoder-
based agents, namely IGAE, AE, and VtS. We opted for k = 3
to maintain a suitable balance between Bias, Variance, and
Interpretability [46]. The final results are presented in Table
IV. The results from the KNN-MSE analysis align with the
trend observed in the mean success rate. IGAE exhibits the
lowest mean KNN-MSE error, followed by AE, and then Vts.

VII. CONCLUSION AND FUTURE WORK

In this study, we provided practical insights into the com-
plex relationship between state representation in reinforcement
learning, available system and environment information, and
sim2real transfer. Using a grasping task that is easy to solve
for a model-based approach with full system knowledge, we
examined how well an RL agent that uses a representation
with an increasing level of abstraction can solve the same
task. While RL agents with hand-crafted representation had
100% success, it was challenging to solve the task from
images, considering the high precision needed in combination
with the low-resolution image input and the simulation-only

training. We found that autoencoder-based methods need
to be incentivized with domain knowledge to provide a
robust representation for solving the task. An RL agent
relying on representation from our proposed Incentivized
Grasping AutoEncoder could completely solve the task in
simulation and achieve a success rate of 84% in sim2real
transfer. We claim that the additional loss terms in IGAE
make feature detection easier in low-resolution frames since
the reconstruction is incentivized to focus on the smaller
segmented areas of the gripper and object.

In future works, we would like to further explore the
potential of autoencoders and other general or incentivized
representation learning approaches in complex tasks, where
RL agents should possess the flexibility to discern the critical
aspects of the environment they operate in and assess whether
relying on user-defined and hard-coded state representations
can constrain the agent’s adaptability. Through tasks that
require rich contact, like grasping in cluttered scenes, object
pushing, or interaction with novel objects, as well as through
architectures like vision transformers, we anticipate gaining
deeper insights into the most effective state representation
approaches for robotics applications.

REFERENCES

[1] T. Everitt, P. A. Ortega, E. Barnes, and S. Legg, “Understanding agent
incentives using causal influence diagrams. part i: Single action settings,”
2022.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[3] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. P.
Lillicrap, and M. A. Riedmiller, “Deepmind control suite,”
CoRR, vol. abs/1801.00690, 2018. [Online]. Available: http:
//arxiv.org/abs/1801.00690

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, pp. 1798–1828, 08 2013.

[5] A. Tirinzoni, M. Papini, A. Touati, A. Lazaric, and M. Pirotta, “Scalable
representation learning in linear contextual bandits with constant regret
guarantees,” in Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 2307–2319.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/0fd489e5e393f61b355be86ed4c24a54-Paper-Conference.pdf

[6] T. Everitt, R. Carey, E. D. Langlois, P. A. Ortega, and
S. Legg, “Agent incentives: A causal perspective,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 13, pp. 11 487–11 495, May 2021. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17368

[7] C. Dann, Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan,
“Guarantees for epsilon-greedy reinforcement learning with function
approximation,” in International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, ser.
Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka,
L. Song, C. Szepesvári, G. Niu, and S. Sabato, Eds., vol.
162. PMLR, 2022, pp. 4666–4689. [Online]. Available: https:
//proceedings.mlr.press/v162/dann22a.html

[8] A. Agarwal, S. Kakade, A. Krishnamurthy, and W. Sun, “Flambe:
Structural complexity and representation learning of low rank
mdps,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
Eds., vol. 33. Curran Associates, Inc., 2020, pp. 20 095–20 107.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf

[9] M. Uehara, X. Zhang, and W. Sun, “Representation learning
for online and offline RL in low-rank MDPs,” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=J4iSIR9fhY0

http://arxiv.org/abs/1801.00690
http://arxiv.org/abs/1801.00690
https://proceedings.neurips.cc/paper_files/paper/2022/file/0fd489e5e393f61b355be86ed4c24a54-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0fd489e5e393f61b355be86ed4c24a54-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17368
https://proceedings.mlr.press/v162/dann22a.html
https://proceedings.mlr.press/v162/dann22a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://openreview.net/forum?id=J4iSIR9fhY0


[10] X. Zhang, Y. Song, M. Uehara, M. Wang, W. Sun, and A. Agarwal,
“Efficient reinforcement learning in block mdps: A model-free repre-
sentation learning approach,” in International Conference on Machine
Learning, 2022.

[11] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” in Proceedings of
the 34th International Conference on Neural Information Processing
Systems, ser. NIPS’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of the 35th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 1861–1870.
[Online]. Available: https://proceedings.mlr.press/v80/haarnoja18b.html

[13] J. Josifovski, M. Malmir, N. Klarmann, B. L. Žagar, N. Navarro-
Guerrero, and A. Knoll, “Analysis of randomization effects on sim2real
transfer in reinforcement learning for robotic manipulation tasks,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 10 193–10 200.

[14] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. K. Gupta, “The
unsurprising effectiveness of pre-trained vision models for control,” in
International Conference on Machine Learning, 2022.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[16] S. Joshi, S. Kumra, and F. Sahin, “Robotic grasping using deep
reinforcement learning,” in 2020 IEEE 16th International Conference
on Automation Science and Engineering (CASE), 2020, pp. 1461–1466.

[17] M. Breyer, F. Furrer, T. Novkovic, R. Y. Siegwart, and J. I. Nieto,
“Flexible robotic grasping with sim-to-real transfer based reinforcement
learning,” ArXiv, vol. abs/1803.04996, 2018.

[18] A. Nair, S. Bahl, A. Khazatsky, V. Pong, G. Berseth, and S. Levine,
“Contextual imagined goals for self-supervised robotic learning,” in
Conference on Robot Learning (CoRL), 2019.

[19] A. Zhan, R. Zhao, L. Pinto, P. Abbeel, and M. Laskin, “Learning
visual robotic control efficiently with contrastive pre-training and data
augmentation,” 2022.

[20] C. S. Wickramasinghe, D. L. Marino, and M. Manic, “Resnet
autoencoders for unsupervised feature learning from high-dimensional
data: Deep models resistant to performance degradation,” IEEE Access,
vol. 9, pp. 40 511–40 520, 2021.

[21] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[22] P. Florence, L. Manuelli, and R. Tedrake, “Self-supervised correspon-
dence in visuomotor policy learning,” IEEE Robotics and Automation
Letters, vol. PP, pp. 1–1, 11 2019.

[23] L. Berscheid and T. Kröger, “Jerk-limited real-time trajectory generation
with arbitrary target states,” Robotics: Science and Systems XVII, 2021.

[24] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 2020, pp.
737–744.

[25] M. Malmir, J. Josifovski, N. Klarmann, and A. Knoll, “Robust sim2real
transfer by learning inverse dynamics of simulated systems,” in 2nd
Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics,
2020.

[26] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from sim-
ulation to the real world,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 23–30.

[27] J. Josifovski, M. Malmir, N. Klarmann, and A. Knoll, “Continual
Learning on Incremental Simulations for Real-World Robotic Manipu-
lation Tasks,” in 2nd R:SS Workshop on Closing the Reality Gap in
Sim2Real Transfer for Robotics, Corvallis, OR, USA, 2020, p. 3.

[28] “Unity 3d,” https://unity.com/, accessed: 2024-4-29.
[29] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,

M. Stilman, and C. K. Liu, “Dart: Dynamic animation and robotics
toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500,
2018. [Online]. Available: https://doi.org/10.21105/joss.00500

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs],
2016.

[31] “Kuka lbr-iiwa,” https://www.kuka.com/en-de/products/robot-systems/
industrial-robots/lbr-iiwa, accessed: 2024-4-29.

[32] “robotiq: 32f-85 robot gripper,” https://robotiq.com/products/
2f85-140-adaptive-robot-gripper.

[33] “Ros industrial,” https://github.com/ros-industrial/kuka experimental,
accessed: 2024-4-29.

[34] “Robotiq packages,” https://github.com/ros-industrial/robotiq, accessed:
2024-4-29.

[35] C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff,
and N. Navab, “Towards MRI-Based Autonomous Robotic Us Ac-
quisitions: A First Feasibility Study,” IEEE Transactions on Medical
Imaging, vol. 36, no. 2, pp. 538–548, 2017.

[36] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[37] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter,
and R. Siegwart, “Kinect v2 for mobile robot navigation: Evaluation
and modeling,” in 2015 international conference on advanced robotics
(ICAR). IEEE, 2015, pp. 388–394.

[38] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2,
Institute for Artificial Intelligence, University Bremen, 2014 – 2015,
accessed: 2024-4-29.

[39] B. Joshi, M. Modasshir, T. Manderson, H. Damron, M. Xanthidis,
A. Q. Li, I. Rekleitis, and G. Dudek, “Deepurl: Deep pose estimation
framework for underwater relative localization,” 2021.

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[41] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[42] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[43] M. Dalal, D. Pathak, and R. Salakhutdinov, “Accelerating robotic
reinforcement learning via parameterized action primitives,” in NeurIPS,
2021.

[44] T. Lesort, M. Seurin, X. Li, N. D. Rodrı́guez, and D. Filliat,
“Unsupervised state representation learning with robotic priors: a
robustness benchmark,” ArXiv, vol. abs/1709.05185, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:26616326

[45] T. Lesort, N. Dı́az-Rodrı́guez, J.-F. Goudou, and D. Filliat,
“State representation learning for control: An overview,” Neural
Networks, vol. 108, pp. 379–392, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608018302053

[46] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

https://proceedings.mlr.press/v80/haarnoja18b.html
https://unity.com/
https://doi.org/10.21105/joss.00500
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://github.com/ros-industrial/kuka_experimental
https://github.com/ros-industrial/robotiq
https://www.ros.org
https://github.com/code-iai/iai_kinect2
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://api.semanticscholar.org/CorpusID:26616326
https://www.sciencedirect.com/science/article/pii/S0893608018302053
https://www.sciencedirect.com/science/article/pii/S0893608018302053

	Introduction
	Background and Related Work
	Methodology
	Task Formulation
	Image Processing Backbone
	State Representations Continuum
	Domain Randomization for Sim-to-Real Transfer

	Experiment Setup
	Environment Description
	Implementation Details

	Experiment Results
	Discussion
	Conclusion and Future Work
	References

